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Abstract 

A computer-simulation method is proposed for 
studying the hydrodynamic interactions of rigid pro- 
tein molecules. It is a combination of Stokes 
dynamics and continuum hydrodynamics. The 
Stokes equations of motion for the protein mol- 
ecules, the creeping-flow equation for the solvent 
together with the no-slip boundary conditions give a 
complefe representation of the system. The resulting 
three-dimensional boundary-value problem can be 
rewritten in a two-dimensional form (without any 
loss of information) considering the surfaces of the 
particles only. Then, by solving the equations on 
discrete surface elements, the so-called mobility 
matrix is determined in which all hydrodynamic 
interactions are included. Finally, after calculation of 
the conservative forces and the stochastic force, the 
new velocities of the protein molecules can be deter- 
mined. The simulation method can be applied to 
arbitrary particle shapes. It can also handle arbitrary 
flow fields, and the effects of applying a flow field to 
the system can be studied. From analysis of the 
trajectories, information can be gained on the kine- 
tics and thermodynamics in the early stages of the 
crystallization process. 

Introduction 

A large number of experiments are performed in 
order to obtain a better insight into the mechanisms 
underlying the protein crystallization process. In 
addition to these experiments computer simulations 
can be of great value. They can provide additional 
information where experimental techniques fail and 
they can help the interpretation of the experiments. 
In this paper we propose a method to study the 
physico-chemical aspects of protein crystallization. 
The central idea is that the only force acting over a 
length scale comparable with the size of the protein 
molecules is the hydrodynamic interaction. This is 
very important when considering steering effects in 
the process of nucleation. All other forces such as 
electrostatic and van der Waals interactions are 
much more short-ranged and extend only over a few 
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A under high-salt conditions. Considering protein 
crystallization, dimensions of millimeters (crystal 
sizes) and minutes are common, whereas in simu- 
lation methods such as molecular dynamics the 
nanometer and picosecond are used. For the simu- 
lation of protein crystallization one has to try to 
operate somewhere between these macroscopic and 
microscopic descriptions. It is in this mesoscopic 
domain that we will perform our simulations. 

In the molecular-dynamics method all interactions 
are calculated on an atomic scale. For particles in a 
solution this becomes a tremendous task as the total 
number of degrees of freedom is very large. Applica- 
tion of stochastic simulations such as Brownian 
dynamics (BD) (Ermak & McCammon, 1978) 
reduces the computational effort considerably for 
such systems. Numerous BD simulations have been 
performed on biological systems (see e.g. Dickinson, 
1985). However, the method is not very well suited to 
study protein crystallization as it uses models for the 
hydrodynamic interactions which assume a very 
symmetrical particle shape and which collapse for 
small interparticle distances. For the crystallization 
process the exact shape of the molecules is very 
important as well as the events occurring at small 
interparticle separations. Therefore, we propose a 
different simulation method which handles the 
hydrodynamic interactions properly so that the early 
stages of protein crystallization can be studied. 

The outline of this paper is as follows. First, the 
theory will be briefly explained. The next section 
deals with the solving of the boundary value problem 
and gives a schematic view of the simulation pro- 
cedure. Finally, the possible applications of the 
method will be discussed. 

Theory 

To study protein crystallization the movements of 
the protein molecules resulting from the forces acting 
on them must be followed. In order to reduce the 
computer time these molecules will be considered to 
be rigid. For the velocities of the viscous, incom- 
pressible fluid, the creeping flow (linearized Navier- 
Stokes) equation holds, 
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VZu = 1Vp, (1) 
~7 

together with the continuity equation, 

V-u = 0. (2) 

Here, u is the fluid velocity, ~7 the fluid viscosity, and 
p the hydrostatic pressure, p is related to the pressure 
tensor / / .  

For the motion of a rigid particle in this fluid the 
Langevin equation holds 

dV 
M"-~-f = Fh + Fnon-h, (3) 

with V a column vector of dimension 6 containing 
the translational and angular velocities of the particle 
[the particle having six degrees of freedom (x, y, z, 
~01, q~2, ~03)]. The particle and fluid velocities are 
related by the no-slip boundary conditions through 
which it is assumed that the relative tangential velo- 
city component of fluid in contact with the rigid 
particle's surface is taken as zero. M is a generalized 
mass/moment of inertia matrix of dimension 6 x 6. 
Fh and Fnon_ h are  six-dimensional (hydro- and non- 
hydrodynamic) force-torque vectors. 

The non-hydrodynamic forces may come from 
electrostatic interactions, van der Waals interactions, 
hydrogen bonding, gravitational forces, etc. The 
hydrodynamic force exerted by the surrounding fluid 
on the particle is given by 

F =  f H ' d S .  (4) 
particle 

The torque experienced by the particle may be 
obtained in a similar way (Happel & Brenner, 1973). 

For a low Reynolds number the particle inertia in 
(3) may be neglected as compared to the viscous 
forces. With 

Fh = - R" V + Fstoch, (5) 

this leads to solving for the velocities 

V = R - l .  {Fstoch + Fnon-h}. (6) 

Here, R is the resistance matrix and its inverse is the 
mobility matrix. The stochastic part of the hydro- 
dynamic force comes from the continuous bombard- 
ment of the protein molecules by the solvent 
particles. Note that inverting the matrix R consumes 
the most time, growing as the third power of the 
number of particles; computing R grows only as the 
square of the number of particles. 

Thus, with knowledge of the mobility matrix R-  
and the non-hydrodynamic and stochastic forces 
Fstoc h and Fnon_h, the velocities (and positions) of the 
protein molecule can be calculated for a large 
number of time steps, thus yielding the trajectories of 
the molecule. For many-particle systems the pro- 
cedure can be derived analogously. 

Method 
The crucial step in the calculations is finding the 
solution of the no-slip boundary conditions. A new 
numerical technique is the boundary integral equa- 
tion method (see Weinbaum, Ganatos & Y a n ,  1990). 
An advantage of this method is the reduction of the 
original three-dimensional boundary-value problem 
for the velocity field to a two-dimensional problem 
(without any loss of information). 

The Stokes problem can be rewritten as a sum of 
so-called single- and double-layer potentials 
(Ladyzhenskaya, 1969), whereby the stress force is 
distributed over the particle's surface. The local 
stress force density fix) exerted by the fluid on the 
surface of the particle is then to be determined, 
satisfying the boundary conditions. 

The resulting surface integral equations can be 
solved numerically, and this transforms them into a 
linear system of algebraic equations. This can be 
done by dividing the particle's surface Sp into M 
elements Am(m= 1,2 .... ,M)  all of which are small 
relative to Sp and over which the components of f 
may, for the purposes of the integral equations, be 
considered constant and equal to their value at the 
centre of the element. The particle's surface can be 
described by discrete surface elements by using tri- 
angulation techniques (Juffer, Botta, van Keulen, 
van der Ploeg & Berendsen, 1991). 

The integral equations are satisfied at the centres 
x(m)(m = 1,2 ..... M)  of each element, thereby yielding 
(Youngren & Acrivos, 1975): 

1 Z fk[x(J~]ff ~ 6,j, + [x~" ' -  yi][x~ m' - yk] dS v 
~ ~T j = I Aj ~ rx,m,y r~,,,~. 

3 
= - U, E x ( m ) ] - - -  

217" 

X f f  [x~m)-- Yi][xfm)--  YJ][X~m)-- yk]n,(y)Uk(y) 
.% r~.,,y dS"" 

(7) 

Here, U is the known fluid velocity, x and y coordi- 
nates, i, j, k directions, r x y = l x - y ] ,  8ik the 
Kronecker delta, n a vector normal to the surface 
element, and dSy indicates that the integration is 
with respect to the point y. Here, the usual Cartesian 
tensor-summation convention is adopted and unit 
viscosity is assumed. 

The above form a linear system of 3M equations 
in the 3M unknowns f~,[x(')]. It can be solved 
numerically using suitable integration and matrix- 
inversion techniques. From the A,.k the mobility 
matrix can be derived and using (6) the trajectories 
of the protein molecule can be calculated. 

Summarizing, a schematic representation of the 
simulation procedures is as follows. 
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(1) Describe the atomic positions and orientation 
of the protein molecules. 

(2) Triangulate the particles' surfaces. 
(3) Solve the boundary value problem using 

equation (7). 
(4) Determine the mobility matrices. 
(5) Calculate the non-hydrodynamic and sto- 

chastic forces acting on the molecules. 
(6) Calculate the new velocities using equation (6). 
(7) Calculate new positions and orientation of the 

protein molecules. 
(8) Go to step 3. Perform the iterations for 

N S T E P S  time steps. 

Discussion 

The simulation method can be applied to arbitrary 
particle shapes. It can also handle arbitrary flow 
fields, and the effects of applying a flow field to the 
system can be studied. Furthermore, the effects of 
changing the temperature and the solvent type can 
easily be investigated. 

From analysis of the trajectories information can 
be gained on the kinetics and thermodynamics in the 
early stages of the crystalllization process. For 
instance, by letting two protein molecules interact, 

thereby moving around and over each other, 
nucleation kinetics can be studied, and also, the 
formation of trimers, tetramers, ..., n-mers. And 
finally, given a description of the shape of the crystal 
surface, attachment of a protein molecule on the 
crystal can be followed. This can contribute to a 
better understanding of the underlying mechanisms. 

The help of E. F. F. Botta and F. W. Wubs of our 
mathematical department is gratefully acknowl- 
edged. This study is supported by SRON (Nether- 
lands Space Research Foundation). 
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